
F Fermi National Accelerator Laboratory

FERMILAB-Conf-99/181

CDFVME – Software Framework for Testing VME Boards

C. Gay et al.

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

July 1999

Published Proceedings of the 11th IEEE NPSS Real Time Conference,

Santa Fe, New Mexico, June 14-18, 1999

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Noti�cation

This manuscript has been authored by Universities Research Association, Inc. under con-

tract No. DE-AC02-76CHO3000 with the U.S. Department of Energy. The United States

Government and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license

to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.

CDFVME – Software framework for testing VME boards1

C. Gay2, Y. Guo3, S. Nahn2, J. Patrick3, S. Vejcik3, M. Votava3

2Yale University, Physics Dept. PO Box 208120, New Haven, CT 06520-8120
3Fermilab, P.O. Box 500, Batavia, IL 60510

1 This work is sponsored by DOE contract NO. DE-AC02-76CH03000

Abstract
New VME based boards are being produced for the

Run II of the Collider Detector at Fermilab (CDF). These
boards are being developed and tested at both Fermilab
and offsite institutions. A software framework called
CDFVME has been developed in which DAQ code can be
easily written to control such boards in a test stand. The
framework has been used to perform diagnostics at single
board, multi-board, and multi-crate levels.

This software framework runs on Unix, Linux and
Windows NT platforms with a Java GUI communicating
via LAN to multiple intelligent front end VME crates. All
distributed processes are managed by a custom CORBA
based software. The system has been ported to Motorola
68K and PPC front end processors running the VxWorks
real-time kernel [1].

I. INTRODUCTION

The nature of High Energy physics, the large bulk of
data and high frequency of events, requires an enormous
effort in developing hardware to record the data, involving
many different collaborators spread around the world,
each building their piece of the detector according to the
design. For instance, roughly 60 different types of boards,
numbering in total perhaps 1000, will be used in 150
VIPA crates in the final CDF Data Acquisition system.
However, it is a rare piece of complex hardware which
requires no software to see if it works; thus, software is
typically developed along with the hardware for testing
purposes.

More often than not, the result is many pieces of test
code developed on incompatible platforms which only
function when driven by the hardware developers who
wrote them. These developers have invested much time in
investigating software, rather than the actual hardware
they are trying to bring up, which is unpalatable
considering the level of importance placed on schedules in
the High Energy physics world. Finally, there is no chance
for integration with other bits of code for system level
tests without a lot of rewriting and re-debugging.

The CDFVME framework was created with the goal of
avoiding such chaos by making it easy to write and debug
potentially complicated diagnostic code, using Java to
eliminate platform dependence, and a common interface
for easy integration of separately developed hardware.
The use of one common framework, with aspects in
common with the CDF final run control, consolidates

expertise, such that software related problems can be
solved by experts who know nothing about the hardware
involved. The common GUI interface and common tools
give users a familiar interface to all boards, whether they
developed them or not.

 Over the last year, the CDFVME framework has been
used in developing board support packages for essentially
all VME hardware development for CDF. Most prototype
hardware has become finalized, and CDFVME code is
being used to write checkout tests for production quantities
of boards. It is also the basis of a “Toy Run Control” to
provide a smooth transition from test stand software to full
run control software.

II. CDFVME INFRASTRUCTURE

The hardware architecture is a collection of VME
crates with custom built VME boards that collect data
from the CDF detector. CDFVME matches with a
distributed software architecture which contains a Java
client running on Unix or Windows NT and servers on
Motorola 68K and PPC front end processors (“servers”) in
the crates running the VxWorks real-time kernel. The
transport layer is using in-house CORBA-based distributed
object package called ROBIN (Rpc and Object Broker)[2].
VME accesses are through in-house software package
FISION (Fermilab’s VISION)[3].

Figure 1: CDFVME Architecture. Java Objects have
CORBA connections to the front end CPUs where the

remote objects access the hardware.

The resulting software structure is shown in Figure 1.
In general, the Java client instantiates objects (crate and
board objects) dynamically according to configuration
files specifying the node names of the front end servers
and the board types in the particular slots. The transport
layer dynamically loads server code and creates remote
objects mirroring the client objects. Thus the client code
is able to transparently manipulate the hardware through

its local references which are connected to VME
backplane access code through the server implementation
of the CORBA methods.

A. Client Side Code
The client side of CDFVME is written in pure Java,

which has several advantages. Packages using CDFVME
have been developed and can function on any combination
of Linux, Irix, and Windows NT platforms. As an object
oriented (OO) language, Java provides a natural mapping
of several crates containing boards easily into an array of
crate objects each containing arbitrary board objects. In
addition, inheritance is very useful in providing general
routines for every board, or writing tests that differ only in
how data is collected or compared. Java also has a built-in
GUI toolkit, making it easy to add GUI for board and test
stand control. Finally, and perhaps most importantly, Java
is a “safe” language for physicists without OO experience,
with automatic memory freeing and reasonable error
handling, providing a nice stepping stone to more modern
programming techniques.

B. Client-Server Transport
The connections between the client CPU and the server

CPUs are implemented using a software package called
ROBIN. ROBIN is CORBA-2.1-based ORB and
developed by Fermilab. ROBIN implements a dynamic
server-side ORB which invokes static skeletons directly.
The server and client skeletons are automatically
generated with the ROBIN IDL compiler. The user
simply adds server code in the marked places to
implement the backplane access to the board register space
and instantiates the generated client objects.

The IDL file implements the model protocol, which is
a small number of routines which label specific atomic
actions, such as “enable”, executed on a target, which
could be a bit, a register, a mode, etc. For example, to
enable a mode called READOUT_MODE, the Java code
would look like:

0\%RDUG�HQDEOH�0\%RDUG�5($'287B02'(��

This would get passed down to the server side code, which
would then do whatever is necessary to set the hardware
into that mode.

The implementation of the transport deserves some
comment. On the client side, in order to hide the choice of
transport and all the details of marshalling and
unmarshalling arguments from the developer code, the
ROBIN generated classes are extended rather than
instantiated. Thus, replacing the transport would in
principle be as simple as extending the board class from an
alternate CORBA implementation. On the server side,
ROBIN produces a stub that unwraps the arguments,
which are then passed on to the server side C library
functions (see below), of which there is one per IDL
method. The separation of the stub from the library
isolates the server code from the choice of transport,
meaning less code rewriting should it be desirable to
change the transport.

C. Server Side Code
The server side code consists of a C library of VME

access functions, which contains both generic and specific
routines for access to VME board registers. The separation
of transport from server code also means more
complicated functions can be built out of the atomic
operations. The function is typically a switch statement on
the target of the action. For the above example, the
“enable” function called above may look like:

6ZLWFK��WDUJHW��^
&DVH�5($'287B02'(�
(QDEOH�5($'287B%8))(56��
5HVHW�287387B),)2��
���

This example shows how the server code can call itself,
forming a self-consistent driver layer for the boards.

The C library level also contains the VME register map
and relevant bit masks, implemented as #define statements
in include files. Should a register move or a bit field
definition change during development, the change required
to the software is limited to one place, not everywhere that
quantity is used.

Finally, the one-to-one matching of the server side
functions to IDL methods makes it easy to move code
from the client side to the server side. The developer can
prototype complex functions in Java, where there is more
control and debugging is easier, and later move them to
the server side with little or no editing, where they avoid
the network and therefore run much faster. This sort of
conversion can increase the speed of Bit Error Rate tests
from ~10 KB/sec to ~10 MB/sec.

III. CDFVME SOFTWARE STRUCTURE

The CDFVME framework contains three packages;
CDFVME_COMMON, which encompasses software
elements common to all board developers,
CDFVME_TEMPLATE, a working example and template
for coding software for a particular type of board, and
CDFVME_TESTSTAND, a working example of
incorporating many board types into a test stand.

A. CDFVME_COMMON
CDFVME_COMMON encompasses software common

to all CDF test stands. It embodies the software definitions
of boards and crates, provides an easy way to put different
combinations of boards together into multi-board and
multi-crate systems, and provides a base from which all
customized test stands extend. It also contains useful Java
utilities, base classes for single board and multi-board
tests, and a Test Manager to run sets of these tests in a
batch-style configuration.

The first task of CDFVME_COMMON is the
definition of common interfaces and classes extended in
the other products. This package provides the base Board

class, which every board extends, such that all boards can
be grouped into Board arrays. The Board class also
provides a standard set of fields such as slot number,
server name, etc. which can then be used as part of a
common look and feel for displaying the board status. The
package also provides the “global objects” which any
board package can use independent of what test stand it is
in. This includes the base configuration object containing
all crates and boards, with various methods to access
them, the main window/status reporter object, and a crate
configuration editor. Users can extend these objects and
customize in the test stands without losing the ability to
incorporate any board.

Keeping in mind that all the production boards need
extensive testing, perhaps one of the more useful facilities
provided in the package is the Test interface and Test
Manager class. A Test Manager is a GUI interface to
incorporate and edit an arbitrary list of tests, select the
hardware to be tested and configuration or each test, and
run them in batch. The tests must implement the Test
interface in the package, which defines how the Test
Manager finds out what hardware a test requires and how
to select it. There are several levels of implementation of
the Test interface that the code developer can choose from
depending on how much of the default implementation
they wish to use. The entire structure is aimed at
providing a flexible and easy to use interface for
developing and running tests for production checkout.
Figure 2 is an example of a Test Manager.

Figure 2. A series of Fib tests in a Test Manager.

The package also contains useful widgets and other
Java objects. One major example of this is the Crate class,
which contains code to read and write any register given
the base address and the accessing mode. This allows
users to start probing their hardware before writing any
code, and similar tools exist for block data I/O, scripting
of single word accesses, etc. Along the same lines are
useful widget extensions, such as text fields that only
allow input of numerical characters, or read-only

checkboxes to display status. As a final example, there are
Utility classes that provide easy wrappers for procedures
that are somewhat awkward in Java, such as opening a
file. These and other constructs in CDFVME_COMMON
make it easier for the Java novice to develop useful
interfaces and tests for their hardware.

B. CDFVME_TEMPLATE
CDFVME_TEMPLATE is a template of what could be

called a Board Support Package i.e. the board-level code
that provides all control, monitoring and test functions for
each VME module type. It contains the base structure for
implementing board-specific code on both the server and
client side, as well as the IDL file which generates the
CORBA links between these. “Out of the box”, it is coded
with a complete working example using a fictitious board,
with print statements for the user to trace through the code
while trying it out. It comes with a script to convert the
demonstration code to the start of a real board package.

Implementation of a board requires two actions. The
first is the creation of server routines and IDL targets and
functions to access the particular board register space.
This is straightforward but tedious work of defining bits
and addresses and making VISION calls to the board.

The second stage of development is implementation of
pure Java functions which manipulate the “state of the
board”, that is, the values of all registers, bits, etc that
define the board state. Several routines are required to
move this board state between static storage, Java
variables, display GUI, and the actual registers on the
hardware. Furthermore, the user must implement some
GUI to display the board’s state. Mandating all this allows
general code and GUI to manipulate and display any board
state, load it from or save it to a file, read or write it to the
board etc. Figure 3 is an example of a board display.

Other than the board implementations, the board
support package is the place to put other specific board
code, such as tests and calibration classes that use the
board. The package then gets propagated as a product that
other people can use simply by pointing their classpath at
the location of the code.

Figure 3. Board Display. The board specific details
are encapsulated within a standard frame, which includes
navigation between boards and transferal of the state
between the GUI, hardware, and static storage.

C. CDFVME_TESTSTAND
CDFVME_TESTSTAND is simply a starting point for

creating a test stand that integrates a collection of arbitrary
boards into a DAQ system, corresponding to what
hardware is in the crates. It consists of some trivial
extensions of CDFVME_COMMON classes and a Board
Types interface, which contains information about the
boards that the test stand will use. Incorporating other
boards into a test stand is as simple as adding them to this
interface, and including them in the configuration files
describing the crates. At the same time, the simple
implementation can be added to, providing multi-board
code, adding extra Test Managers and tests for many
boards, etc. In this way the CDFVME framework makes
it very easy to integrate independently developed boards
and build test stands.

Perhaps the best example of a modified test stand is the
Toy Run Control. This is just a simple test stand with an
extra interface for sending “Run Control” commands to
the front end CPUs. The Toy Run Control will import
many boards and use their board support packages when
responding to run control commands, as a first step
towards integration. It also can support development of
database access to replace the ASCII configuration files,
development of Error Messaging and Monitoring systems,
etc. The goal of the Toy Run Control is to provide a
platform to develop pieces of the Full Run Control while

utilizing well known and well debugged test stand code
from the CDFVME framework.

IV. SUMMARY

The scale and complexity of hardware development, in
high energy physics, involving many people working
independently on pieces of the system, requires a flexible
software interface that is not overly complex, can run on
multiple platforms, and makes it easy to combine pieces as
the DAQ system comes together. The CDFVME
framework satisfies these requirements, giving a coherent
platform for developers and users to create and combine
software to test the hardware from the first probing of
registers until final integration at the detector.

REFERENCES

[1] VxWorks is Wind River’s real time operating system.
More information is at http://www.wrs.com

[2] ROBIN information can be found at http://www-
b0.fnal.gov:8000/ROBIN.html

[3] The FISION implementation of VISION: http://www-
b0.fnal.gov:8000/vme/VISION.html

